Package: treeDA 0.0.5
treeDA: Tree-Based Discriminant Analysis
Performs sparse discriminant analysis on a combination of node and leaf predictors when the predictor variables are structured according to a tree, as described in Fukuyama et al. (2017) <doi:10.1371/journal.pcbi.1005706>.
Authors:
treeDA_0.0.5.tar.gz
treeDA_0.0.5.zip(r-4.5)treeDA_0.0.5.zip(r-4.4)treeDA_0.0.5.zip(r-4.3)
treeDA_0.0.5.tgz(r-4.4-any)treeDA_0.0.5.tgz(r-4.3-any)
treeDA_0.0.5.tar.gz(r-4.5-noble)treeDA_0.0.5.tar.gz(r-4.4-noble)
treeDA_0.0.5.tgz(r-4.4-emscripten)treeDA_0.0.5.tgz(r-4.3-emscripten)
treeDA.pdf |treeDA.html✨
treeDA/json (API)
# Install 'treeDA' in R: |
install.packages('treeDA', repos = c('https://jfukuyama.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jfukuyama/treeda/issues
- treeda_example - Example dataset
Last updated 4 years agofrom:86ae334c34. Checks:OK: 6 WARNING: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win | OK | Nov 02 2024 |
R-4.5-linux | WARNING | Nov 02 2024 |
R-4.4-win | OK | Nov 02 2024 |
R-4.4-mac | OK | Nov 02 2024 |
R-4.3-win | OK | Nov 02 2024 |
R-4.3-mac | OK | Nov 02 2024 |
Exports:combine_plot_and_treeget_leaf_positionmakeNodeAndLeafPredictorsnodeToLeafCoefficientsplot_coefficientstreedatreedacv
Dependencies:ade4apeaskpassBiobaseBiocGenericsbiomformatBiostringsclasscliclustercodetoolscolorspacecpp11crayoncurldata.tabledigestelasticnetfansifarverforeachgenericsGenomeInfoDbGenomeInfoDbDataggplot2gluegtablehttrigraphIRangesisobanditeratorsjsonlitelabelinglarslatticelifecyclemagrittrMASSMatrixmdamgcvmimemulttestmunsellmvtnormnlmeopensslpermutephyloseqpillarpixmappkgconfigplyrR6RColorBrewerRcppRcppArmadilloreshape2rhdf5rhdf5filtersRhdf5librlangS4VectorsscalesspsparseLDAstringistringrsurvivalsystibbleUCSC.utilsutf8vctrsveganviridisLitewithrXVectorzlibbioc
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Tree-based discriminant analysis | treeDA-package treeDA |
Coefficients from treeda fit | coef.treeda |
Method for combining two ggplots | combine_plot_and_tree |
Get leaf positions from a tree layout | get_leaf_position |
Make a matrix with predictors for each leaf and node | makeNodeAndLeafPredictors |
Node coefficients to leaf coefficients | nodeToLeafCoefficients |
Plot the discriminating axes from treeda | plot_coefficients |
Plot a treedacv object | plot.treedacv |
Predict using new data | predict.treeda |
Print a treeda object | print.treeda |
Print treedacv objects | print.treedacv |
Tree-based sparse discriminant analysis | treeda |
Example dataset | treeda_example |
treeda cross validation | treedacv |